

a member of **EKK** and **FREUDENBERG**

RELY ON EXCELLENCE

Mtex Dual seals

Mechanical seals | Mechanical seals for pumps | Standard cartridge seals

Features

- Double seal
- Mtex-DN: API Plan 52 (53/54)
- Mtex9-DN: API Plan 53/54
- Cartridge
- Balanced
- Independent of direction of rotation
- Metal bellows
- Stationary Springs
- Pumping device independent of direction of rotation

Advantages

- Ideal seal for standardizations
- Universal applicable for packings conversions, retrofits or OEM
- No dimensional modification of the seal chamber (centrifugal pumps) necessary, small radial installation height
- Trouble-free running due to bellows unit with vibration dampers (essential in case of dry-running)
- No damage of the shaft by dynamically loaded O-Ring
- Self cleaning effect of the bellows
- Straightforward and easy installation due to pre-assembled unit

Operating range

Shaft diameter:

d1 = 25 ... 80 mm (1" ... 3.15")

Temperature:

t* = -40 °C ... +220 °C (-40 °F ... + 428 °F)

Pressure: p1 = 25 bar (232 PSI)

Sliding velocity: vg = 20 m/s (66 ft/s)

Barrier fluid circulation system:

p3max = 16 bar (232 PSI)

 $\Delta p (p3-p1) ideal = 2 ... 3 bar (29 ... 44 PSI)$ $\Delta p (p3-p1) max$.

- = 10 bar (145 PSI) at <120 °C (<248 °F)
- = 5 bar (73 PSI) at ≤ 220 °C (≤232 °F)

API Plan 52 (53/54)

Pump startup:

 Δp (p3-p1) max.16 bar (232 PSI) allowed

* Operating limits of O-Rings to be observed

Materials

Seal face:

Carbon graphite (A), Silicon carbide (Q1)

Seat:

Silicon carbide (Q1), Tungsten carbide (U2)

Secondary seals:

FPM(V), EPDM(E), FFKM(K)

Bellows: Inconel® 718 (M6)

Springs: Hastelloy® C-4(M)

Metal parts: CrNiMo steel (G), Duplex (G1)

Recommended applications

- Process industry
- Chemical industry
- Hot media
- Cold media
- Highly viscous media
- Pumps
- Special rotating equipment

Recommended piping plans

EagleBurgmann TS 2000 Thermosiphon system

Product link:

EagleBurgmann TS2000

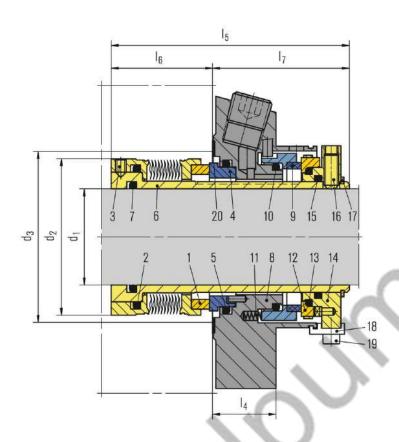
Detailed information

on these API 682 4th edition plans:

API Plan 52

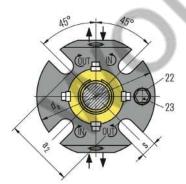
API Plan 53A

API Plan 53B


API Plan 53C

API Plan 54

a member of **EKK** and **FREUDENBERG**


RELY ON EXCELLENCE

	Item	Description						
	1	Bellows unit						
	2	0-Ring						
	3	Set screw						
	4	Seat						
	5	0-Ring						
	6	Shaft sleeve						
	7	0-Ring						
	8	Cover						
	9	Seal face						
	10	0-Ring						
	11	Spring						
	12	Seat						
ŀ	13	0-Ring						
	14	Drive collar						
ŗ	15	0-Ring						
	16	Set screw						
þ,	17	Retaining ring						
	18	Assembly fixture						
	19	Hex socket head screw						
	20, 22	Gasket						
	23	Screw plug						

Installation, details, options

Seal cover

RELY ON EXCELLENCE

Product variants

Mtex9-DN

Dimensions, items and descriptions as for Mtex-DN, but with optimized seal face geometry for pressurized operation according to API Plan 53/54. A barrier fluid system (e.g. EagleBurgmann TS2000) is necessary.

Pressure: p1 = 10 bar (145 PSI) Sliding velocity: vg = 20 m/s (66 ft/s)

Barrier fluid circulation system: p3max = 16 bar (232 PSI)

 $\Delta p (p3 - p1) ideal = 2 ... 3 bar (29 ... 44 PSI)$ $\Delta p (p3 - p1) max = 16 bar (232 PSI)$

API Plan 53/54

Pump startup:

 $\Delta p (p3 - p1) max = 16 bar (232 PSI) allowed$

Dimensions

d ₁	d ₂	d ₃ min.	d ₃ max.	14	l ₅	I ₆	I ₇	da	a ₂	s
25	45.0	47.0	51.0	25.4	87.0	33.6	53.4	105.0	62.0	13.2
30	49.4	52.0	56.0	25.4	86.5	33.1	53.4	105.0	67.0	13.2
32	52.3	54.5	57.0	25.4	86.5	33.1	53.4	108.0	70.0	13.2
33	52.3	54.5	57.0	25.4	86.5	33.1	53.4	108.0	70.0	13.2
35	54.8	58.0	61.5	25.4	86.5	33.1	53.4	113.0	72.0	13.2
38	57.5	60.0	66.0	25.4	86.5	33.1	53.4	123.0	75.0	14.0
40	58.8	62.0	68.0	25.4	86.3	32.9	53.4	123.0	77.0	14.2
43	61.9	64.5	70.5	25.4	86.5	33.1	53.4	133.0	80.0	14.2
45	65.0	68.5	73.0	25.4	86.5	33.1	53.4	138.0	82.0	14.2
48	68.4	71.0	75.0	25.4	86.8	33.4	53.4	138.0	85.0	14.2
50	70.0	73.0	78.0	25.4	87.2	33.8	53.4	148.0	87.0	14.2
53	71.9	75.0	87.0	25.4	87.4	34.0	53.4	148.0	97.0	18.0
55	74.6	77.0	83.0	25.4	87.0	33.6	53.4	148.0	92.0	18.0
60	83.9	87.0	91.0	25.4	88.2	34.8	53.4	157.0	102.0	18.0
65	87.5	90.0	98.5	25.4	88.1	34.7	53.4	163.0	109.3	18.0
70	93.0	98.0	108.0	25.4	89.6	36.2	53.4	178.0	118.3	18.0
75	96.8	101.6	118.0	28.0	107.4	43.5	63.9	190.0	129.0	18.0
80	104.7	108.0	124.0	28.0	106.8	42.9	63.9	195.0	135.0	18.0

Dimensions in millimeter